Clustering Based on Compressed Data for Categorical and Mixed Attributes

نویسندگان

  • Eréndira Rendón Lara
  • José Salvador Sánchez
چکیده

Clustering in data mining is a discovery process that groups a set of data so as to maximize the intra-cluster similarity and to minimize the intercluster similarity. Clustering becomes more challenging when data are categorical and the amount of available memory is less than the size of the data set. In this paper, we introduce CBC (Clustering Based on Compressed Data), an extension of the Birch algorithm whose main characteristics refer to the fact that it can be especially suitable for very large databases and it can work both with categorical attributes and mixed features. Effectiveness and performance of the CBC procedure were compared with those of the well-known K-modes clustering algorithm, demonstrating that the CBC summary process does not affect the final clustering, while execution times can be drastically lessened.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clustering Mixed Numeric and Categorical Data: A Cluster Ensemble Approach

Clustering is a widely used technique in data mining applications for discovering patterns in underlying data. Most traditional clustering algorithms are limited to handling datasets that contain either numeric or categorical attributes. However, datasets with mixed types of attributes are common in real life data mining applications. In this paper, we propose a novel divide-and-conquer techniq...

متن کامل

Numerical and Categorical Attributes Data Clustering Using K- Modes and Fuzzy K-Modes

Most of the existing clustering approaches are applicable to purely numerical or categorical data only, but not the both. In general, it is a nontrivial task to perform clustering on mixed data composed of numerical and categorical attributes because there exists an awkward gap between the similarity metrics for categorical and numerical data. This paper therefore presents a general clustering ...

متن کامل

A Unified Metric for Categorical and Numerical Attributes in Data Clustering

Most of the existing clustering approaches concentrate on purely numerical or categorical data only, but not the both. In general, it is a nontrivial task to perform clustering on mixed data composed of numerical and categorical attributes because there exists an awkward gap between the similarity metrics for categorical and numerical data. This paper therefore presents a unified metric for dat...

متن کامل

Categorical-and-numerical-attribute data clustering based on a unified similarity metric without knowing cluster number

Most of the existing clustering approaches are applicable to purely numerical or categorical data only, but not the both. In general, it is a nontrivial task to perform clustering on mixed data composed of numerical and categorical attributes because there exists an awkward gap between the similarity metrics for categorical and numerical data. This paper therefore presents a general clustering ...

متن کامل

An improved k-prototypes clustering algorithm for mixed numeric and categorical data

Data objects with mixed numeric and categorical attributes are commonly encountered in real world. The k-prototypes algorithm is one of the principal algorithms for clustering this type of data objects. In this paper, we propose an improved k-prototypes algorithm to cluster mixed data. In our method, we first introduce the concept of the distribution centroid for representing the prototype of c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006